
2019-11-22

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math

Prof. Hiren Patel, Ph.D.

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Introducing classes
and linked lists

2
Introducing classes and linked lists

Outline

• In this lesson, we will:

– Describe the idea of a linked list

– Describe various operations that can be performed on linked lists

– Understand the differences and benefits—in some circumstances—of
linked lists

3
Introducing classes and linked lists

Nodes

• I want to remember 100 numbers:

– Suppose I have a student, and I tell that student a number to
remember

– Then, there is a second student who I ask to save another number,
but instead of remembering that student, I ask the first student to
remember that second student

– A third student could remember the next number, and the second
student could be asked to remember that third student

• Do this for 100 students, and all 100 numbers will be remembered

– I can also access all 100 numbers with no effort on my part

4
Introducing classes and linked lists

Nodes

• This is identical to the following scheme:

– We could do this with arrays:

double a_values[10];

std::size_t a_next_index[10];

• In this case, we could link the data via the second array:

– Assuming the first value is at 0, this example stores

3.2, 1.8, 4.5, 7.6

– 10 indicates the end and 11 indicates an unused node

0 1 2 3 4 5 6 7 8 9

3.2 0.0 0.0 4.5 0.0 0.0 7.6 0.0 1.8 0.0

0 1 2 3 4 5 6 7 8 9

8 11 11 6 11 11 10 11 3 11

a_values

a_next_index

2019-11-22

2

5
Introducing classes and linked lists

Nodes

• Suppose we want to add 9.0 to the end of this list

– Find the last entry—the one with the next address being 10

– Find an unused entry

• Suppose we find index 2 is not used

0 1 2 3 4 5 6 7 8 9

3.2 0.0 0.0 4.5 0.0 0.0 7.6 0.0 1.8 0.0

0 1 2 3 4 5 6 7 8 9

8 11 11 6 11 11 10 11 3 11

a_values

a_next_index

6
Introducing classes and linked lists

Nodes

• To add 9.0 at then end:

– Set the data at index 2 to be 9.0

– Set the next index of what is currently the last entry to 2

– Set the next index of 2 to 10

• Now the list contains

3.2, 1.8, 4.5, 7.6, 9.0

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 0.0

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 3 11

a_values

a_next_index

7
Introducing classes and linked lists

Nodes

• Suppose we want to add 6.1 after 1.8 and before 4.5

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 0.0

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 3 11

a_values

a_next_index

8
Introducing classes and linked lists

Nodes

• Suppose we want to add 6.1 after 1.8 and before 4.5

– Find an unused index, say 9

– Write 6.1 to that index

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 6.1

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 3 11

a_values

a_next_index

2019-11-22

3

9
Introducing classes and linked lists

Nodes

• Suppose we want to add 6.1 after 1.8 and before 4.5

– Find an unused index, say 9

– Write 6.1 to that index

– Have its next index store the index of 4.5

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 6.1

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 3 3

a_values

a_next_index

10
Introducing classes and linked lists

Nodes

• Suppose we want to add 6.1 after 1.8 and before 4.5

– Find an unused index, say 9

– Write 6.1 to that index

– Have its next index store the index of 4.5

– Update the next index of 1.8 to be 9

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 6.1

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 9 3

a_values

a_next_index

11
Introducing classes and linked lists

Nodes

• Suppose we want to add 6.1 after 1.8 and before 4.5

– Find an unused index, say 9

– Write 6.1 to that index

– Have its next index store the index of 4.5

– Update the next index of 1.8 to be 9

• We are now storing the list

3.2, 1.8, 6.1, 4.5, 7.6, 9.0

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 6.1

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 9 3

a_values

a_next_index

12
Introducing classes and linked lists

Nodes

• Question:

– What do we have to do to add 5.9 to the start of this list?

– What more information do we require?

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 6.1

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 9 3

a_values

a_next_index

2019-11-22

4

13
Introducing classes and linked lists

Nodes

• Problems with this approach:

– We can still only store 10 values in this node

– It’s better to think of a node being:

• A value

• The index of the next item in the list

– These two pieces of information are, however, stored in different
arrays

0 1 2 3 4 5 6 7 8 9

3.2 0.0 9.0 4.5 0.0 0.0 7.6 0.0 1.8 6.1

0 1 2 3 4 5 6 7 8 9

8 11 10 6 11 11 2 11 9 3

a_values

a_next_index

14
Introducing classes and linked lists

Nodes

• A class is a data structure that allows you to store related data
together

class Index_node {

public:

double value_;

std::size_t next_index_;

};

• The entries value_ and next_index_ are called member variables
of the class

• The identifier Index_node becomes a type no different from int,
long, double, etc.

15
Introducing classes and linked lists

Nodes

• It is possible to declare either an instance or an array of this class:
int main() {

Index_node value{0.0, 0};

Index_node a_values[10]; // uninitialized

return 0;

}

• Each instance of this class (be it the local variable value or each
entry of the array) is described as an object

• Like local variables, each object occupies memory

– In this case, 16 bytes are required:

• 8 bytes for the double

• 8 bytes for the index

– The memory is allocated on the stack
and is cleaned up when the function exits

class Index_node {
public:

double value_;
std::size_t next_index_;

};

16
Introducing classes and linked lists

Nodes

• The data associated with the class are called member variables
class Index_node {

public:

double value_;

std::size_t next_index_;

};

• Member variables can be accessed:
int main() {

Index_node value{0.0, 0};

std::cout << value.value_ << std::endl;

std::cout << value.next_index_ << std::endl;

return 0;

}

Output:
0
0

2019-11-22

5

17
Introducing classes and linked lists

Nodes

• Member variables can also be modified:
int main() {

Index_node value{0.0, 0};

value.value_ = 32.54793;

value.next_index_ = 10;

std::cout << value.value_ << std::endl;

std::cout << value.next_index_ << std::endl;

return 0;

}

Output:
32.54793
10

18
Introducing classes and linked lists

Nodes

• Our single array now looks as follows:
int main() {

Index_node a_values[10];

for (std::size_t k{0}; k < 10; ++k) {

a_values[k].value_ = 0.0;

a_values[k].next_index_ = 11;

// Use 11 to indicate unused

}

return 0;

}

0 1 2 3 4 5 6 7 8 9

0.0 11 0.0 11 0.0 11 0.0 11 0.0 11 0.0 11 0.0 11 0.0 11 0.0 11 0.0 11

19
Introducing classes and linked lists

Nodes

• With the appropriate assignments, we could make our list look like
the previous one

a_values[0].value_ = 3.2;

a_values[0].next_index_ = 8;

a_values[8].value_ = 1.8;

a_values[8].next_index_ = 9;

// etc...

0 1 2 3 4 5 6 7 8 9

3.2 8 0.0 11 9.0 10 4.5 6 0.0 11 0.0 11 7.6 2 0.0 11 1.8 9 6.1 3

20
Introducing classes and linked lists

Finding an unused node

• We could write a function to find an unused node:
std::size_t find_unused_node(Index_node const a_list[],

std::size_t const capacity) {

for (std::size_t k{0}; k < capacity; ++k) {

if (a_list[k].next_index_ == capacity + 1) {

return k;

}

}

return capacity; // Return 'capacity' to indicate no unused node found

}

0 1 2 3 4 5 6 7 8 9

3.2 8 0.0 11 9.0 10 4.5 6 0.0 11 0.0 11 7.6 2 0.0 11 1.8 9 6.1 3

On this array, this function
returns the value 2

2019-11-22

6

21
Introducing classes and linked lists

Appending a new node

• We could write a function to append a value:

– Find a unused entry

– Find the last entry in the list

– Update the last entry and the unused entry

22
Introducing classes and linked lists

Appending a new node
bool push_back(Index_node a_list[], std::size_t const capacity,

double const new_value) {

std::size_t new_index{ find_unused_node(a_list, capacity) };

if (new_index == capacity) {

return false; // We could not append the new value

}

a_list[new_index].value_ = new_value;

a_list[new_index].next_index_ = capacity;

std::size_t last{0}; // Assume the first entry is at index 0...

while (a_list[last].next_index_ != capacity) {

last = a_list[last].next_index_;

}

a_list[last].next_index_ = new_index;

return true;

}0 1 2 3 4 5 6 7 8 9

3.2 8 0.0 11 9.0 10 4.5 6 0.0 11 0.0 11 7.6 2 0.0 11 1.8 9 6.1 3

23
Introducing classes and linked lists

Nodes

• There are two weakness with this approach:

– There are only a finite number of entries

– The user has access to everything and can make mistakes…
std::size_t find_unused_node(Index_node a_list[],

std::size_t const capacity) {

for (std::size_t k{0}; k < capacity; ++k) {

if (a_list[k].next_index_ = capacity + 1) {

return k;

}

}

return capacity;

}

Anytime anyone uses this class, that
programmer could make trivial but
serious mistakes…

0 1 2 3 4 5 6 7 8 9

3.2 11 0.0 11 9.0 10 4.5 6 0.0 11 0.0 11 7.6 2 0.0 11 1.8 9 6.1 3

24
Introducing classes and linked lists

Nodes

• The problem here is any user can access and modify any entry

– This means anytime anyone uses this data structure, there can be
mistakes

0 1 2 3 4 5 6 7 8 9

3.2 11 0.0 11 9.0 10 4.5 6 0.0 11 0.0 11 7.6 2 0.0 11 1.8 9 6.1 3

2019-11-22

7

25
Introducing classes and linked lists

Summary

• Following this lesson, you now

– Understand how classes can be used to combine related material

– Know what a node is and how a link list is structured

– Recognize there are problems when information is available

26
Introducing classes and linked lists

References

[1] No references?

27
Introducing classes and linked lists

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

28
Introducing classes and linked lists

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

